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Carrier-rebalanced interband
cascade lasers require very low
input powers
Chul Soo Kim, Mijin Kim, Chadwick Canedy,
William Bewley, Charles Merritt, Igor Vurgaftman,
Joshua Abell, and Jerry Meyer

Design innovations have dramatically improved the threshold input
power and all other performance characteristics of interband cascade
lasers operating in the midwave-IR.

The recent availability of midwave-IR (i.e., 3–6�m) semicon-
ductor lasers capable of emitting narrow spectral lines at am-
bient or thermoelectric-cooler temperatures (above �20ıC) has
spawned the development of a new generation of chemical sens-
ing systems designed to exploit the prevalence of strong mid-IR
spectroscopic signatures. Widespread use of these sensors is ex-
pected in such applications as greenhouse gas monitoring, con-
trol of combustion and other industrial processes, sensing of
chemical and biological agents, and leak detection. Although the
required laser output powers tend to be rather modest (�1mW),
minimizing the drive power can be critical because the most at-
tractive systems will be quite compact and often powered by
batteries.

Several distinct classes of mid-IR semiconductor lasers are
currently being developed. For example, recent advances have
substantially extended the spectral range of conventional
antimonide-based quantum-well (QW) diodes, although to date
room-temperature (RT) continuous-wave (CW) operation has
been achieved only up to wavelengths slightly beyond 3�m.1

The most widely publicized approach has been the indium
phosphide-based quantum cascade laser (QCL), which employs
multiple stages of QWs stacked in series. This configuration
splits the usual bands of available quantum states for electrons
into subbands. Each electron injected into the device can emit
a cascade of photons by making an intersubband transition
(emitting one photon) in each stage that it traverses. Although
multi-watt RT CW output powers have been generated, QCL
threshold current densities (the level at which lasing begins)

Figure 1. Continuous wave (CW) output power (left scale) and
wallplug efficiency (right scale) as functions of input power at 25ıC
for narrow-ridge interband cascade lasers (ICLs) emitting at a wave-
length of about 3.7�m. The laser cavities had high-reflectance coatings
on one facet and were 0.5mm long. Data are shown for three different
ridge widths (w), varying from 5 to 11�m.

tend to be high,2, 3 �1kA/cm2. Thus far, high performance with
high yield is limited by material constraints to wavelengths
beyond about 4�m.4 A third alternative is the antimonide inter-
band cascade laser (ICL),5, 6 which combines the interband ac-
tive transitions of a conventional diode laser with the multiple
cascaded stages of a QCL. Previous ICLs demonstrated spectral
coverage of at least 2.9–4.2�m, and CW operation up to 72ıC.

A distinctive feature of the ICL is that whereas light is gen-
erated via radiative recombination of electrons and holes (as in
a conventional diode laser), no holes are actually injected into
the device. They are instead created internally at carefully de-
signed semimetallic InAs/GaSb (indium arsenide/gallium an-
timonide) interfaces when an external electric field is applied.
Our recent detailed simulations7 of the carrier statistics showed
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Figure 2. Temperature dependence of CW threshold current densities
(Jth) of narrow-ridge ICLs with five cascade stages. The ridges each
had one high-reflectance and one uncoated facet (HR/U) and were 4mm
long (Lcav) by 10.9�m wide (sample A) and 10.3�m wide (sample B),
respectively. The inset shows CW emission spectra at 25ıC.

that although this process produces equal densities of electrons
and holes, most of the generated electrons remain in the electron
injector whereas most of the holes transfer efficiently to the ac-
tive region via a relatively thin hole injector. Consequently, the
hole population in the active QWs has substantially outnum-
bered the electrons in all previous ICL designs. Because that con-
dition exacerbated the already-deleterious effects of free carrier
absorption of light (i.e., internal loss) and Auger non-radiative
recombination (which removes carriers), the resulting efficiency
and optical gain per unit of injected current density remained far
below the structure’s ideal capacity.

However, the calculations further suggested that very heavy
n-doping of the electron injectors, to the mid-1018cm�3 range,
should eliminate the carrier imbalance. Although most of the
additional electrons continue to populate the injector, a fraction
transfer to the active QWs to roughly equalize the electron and
hole populations there. This ‘carrier rebalancing’ maximizes the
optical gain per unit current density and also reduces the in-
ternal loss because far fewer holes are required to generate the
threshold gain.

Redesigned ICLs incorporating carrier rebalancing have, by
several key figures of merit, displayed record-setting perfor-
mance compared to all previous mid-IR semiconductor lasers.
For pulsed emission at about 3:7�m, we observed a RT thresh-
old current density as low as 167A/cm2, at a threshold volt-
age of 2.1V. The corresponding threshold power density of
0.35kW/cm2 is far below all previous ICL results. Performance
varies depending on the dimensions of the ‘ridge,’ which is

etched into the structure to laterally confine the lasing mode. A
narrow ridge displayed CW lasing up to 109ıC, and other ridges
emitted more than 150mW CW at RT. Figure 1 illustrates the CW
output power and wall-plug efficiency (optical output power
divided by electrical input power) as functions of input power
at 25ıC for three 0.5mm-long laser cavities with high-reflection
coatings on the back facet. The maximum wall-plug efficiency
of 13.5% is only slightly lower than that of the best QCLs emit-
ting at longer wavelengths. The most remarkable finding is that
none of the devices in Figure 1 requires more than about 35mW
of input power to achieve CW lasing. The lowest RT CW input
power reported to date for a QCL is 830mW, for a device with a
partially transmitting high-reflectance output facet.8 More typi-
cal QCL values, in the 2–5W range, are two orders of magnitude
larger than the new ICL result.

Figure 2 shows that such performance can be extended to con-
siderably longer wavelengths as well (about 4.8 and 5.6�m for
samples A and B, respectively).9 Even in this spectral range, the
RT CW threshold power densities of <1kW/cm2 are more than
an order of magnitude lower than the best values (�12kW/cm2)
ever reported for state-of-the-art QCLs. The maximum operating
temperatures were 60ıC (for sample A) and 48ıC (for sample B).

Rebalancing of the hole/electron population ratio in inter-
band cascade lasers has substantially reduced the devices’
threshold input powers, to values more than an order of mag-
nitude below state-of-the-art QCLs emitting in the same spectral
range. Because most chemical spectroscopy systems do not re-
quire high output power, operation near threshold will substan-
tially extend the battery lifetimes and reduce system complexity.
We have also demonstrated single-mode ICLs,10 and are work-
ing to improve those. Other research will focus on further reduc-
ing the current and power thresholds of ICLs and concomitantly
increasing their output power and wallplug efficiency. These
characteristics should position the new generation of carrier-
rebalanced ICLs as the mid-IR lasers of choice for applications
requiring compactness, low cost, and low power budgets.
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